Two Numerical Methods for Solving the Schrödinger Parabolic and Pseudoparabolic Partial Differential Equations

نویسندگان

چکیده

In this work, the initial-boundary value problems for one-dimensional linear time-dependent Schrödinger parabolic and pseudoparabolic partial differential equations are studied. The modified double Laplace decomposition method is applied to get semianalytic solutions explicit finite difference approximate of problems. von Neumann stability analysis presented also investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Mesh Methods for Solving Parabolic Partial Differential Equations

In this thesis, we introduce and assess a new adaptive method for solving non-linear parabolic partial differential equations with fixed or moving boundaries, using a moving mesh with continuous finite elements. The evolution of the mesh within the interior of the spatial domain is based upon conserving the distribution of a chosen monitor function across the domain throughout time, where the i...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Robust Numerical Methods for Partial Differential Equations

The general theme of this project is to study numerical methods for systems of partial diffential equations which depend on one or more critical parameters. Typically, we are interested in systems which change type as a critical perturbation parameter tend to zero. Our goal is to construct numerical methods with convergence properties which are uniform with respect to the perturbation parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematical Physics

سال: 2022

ISSN: ['1687-9139', '1687-9120']

DOI: https://doi.org/10.1155/2022/6542490